Кровь
Содержание:
- Эритроциты: особенности строение, функции, эритроцитопоэз
- Понятие о системе крови
- Состав и физико-химические свойства
- Свойства крови
- Свойства крови
- Тромбоциты
- Переливание не донорской крови: утильная, плацентарная, фибринолизная кровь
- Система крови
- 58.2 Состав плазмы крови. Осмотическое давление крови фс ,обеспечивающая постоянство осмотическое давления крови.
- Строение системы крови: виды гемоглобина
- Клетки крови
- Химический состав и группы
Эритроциты: особенности строение, функции, эритроцитопоэз
Основной тип клеток
крови. Узкоспециализ. кл. У млекопит. в
эритроцитах нет ядра, форма двояковогнутого
диска, у др. позвоночных кл- овальной
формы, содержат ядро с сильно
конденсированным хроматином.
Снаружи эритроцит
покрыт плазмат. мембраной, гликопротеиды
которой определяют группу крови.
Плазмолемма эритроцитов эластична и
пластична (для движении по мелким кровен.
сосудам). Она легко проницаема; переносит
ионы натрия и глюкозы. Цитоплазма
эритроцита на 30% состоит из гемоглобина,
служит местом присоединения кислорода.
Наличие гемоглобина в эритроцитах
обусловливает оксифилию цитоплазмы
при окраске азуром и эозином. Ф:
переносят кислородКроме того, эритроциты
могут адсорбировать на своей поверхности
и транспортировать аминокислоты,
некоторые лекарственные вещества и
токсины.
Эритропоэз-
увеличение количества ретикулоцитов
(незрелых эритроцитов, в которых
наблюдается наличие зернисто-сетчатых
структур (рибосом, элементов ЭПС), при
окрашивание бриллиантовым крезиловым
синим).
Понятие о системе крови
Российский клиницист Г. Ф. Ланг определил, что в систему крови входят сама кровь и органы кроветворения и кроверазрушения, и конечно аппарат регуляции.
Кровь обладает некоторыми особенностями: -за пределами сосудистого русла, образуется все основные части крови;-межклеточное вещество ткани — жидкое;-большая часть крови постоянно находится в движении.
Внутренняя часть организма состоит из тканевой жидкости, лимфы и крови. Их состав теснейшим образом связан между собой. Однако именно тканевая жидкость является истиной внутренней средой человеческого организма, потому что только она контактирует со всеми клетками организма.
Соприкасаясь с эндокардом сосудов, кровь, обеспечивая их жизненный процесс, окольным путем вмешивается во все органы и ткани сквозь тканевую жидкость.
Вода является составной и основной долей тканевой жидкости. В каждом человеческом организме вода составляет более 70% от всей массы тела.
В организме — в воде, находятся растворенные продукты обмена, гормоны, газы, которые постоянно транспортируют между кровью и тканевой жидкостью.
Из этого следует, что внутренняя среда организма представляет собой некий транспорт, включающий в себя кровообращение и движение по одной цепи: кровь — тканевая жидкость – ткань — тканевая жидкость-лимфа-кровь.
На этом примере четко видно, насколько кровь тесно связана с лимфой и тканевой жидкостью.
Необходимо знать, что плазма крови, внутриклеточная и тканевая жидкость имеют отличительный друг от друга состав. Что и определяет интенсивность водного, электролитного и ионного обмена катионов и анионов между тканевой жидкостью, кровью и клетками.
Состав и физико-химические свойства
На 90% плазма состоит из воды. Оставшийся десяток приходится на неорганические и органические вещества. К неорганическим относятся ионы натрия, магния, калия, кальция, хлора. Их доля невелика. Она составляет всего 0,9% от общего состава. Органические представлены белками, глюкозой, витаминами, гормонами, продуктами распада, частицами жира.
В 1948 году в плазме крови человека был обнаружен еще один элемент – внеклеточная ДНК. Выяснилось, что она присутствует не всегда, может появляться в результате травмы, инфаркта, сильного стресса, отмирания клеток при онкологических заболеваниях.
Белки
В общем объеме плазмы доля белков достигает 8%. С точки зрения физиологии они выполняют множество различных функций, важнейшими из которых являются:
- Иммунная регуляция.
- Обеспечение агрегатного состояния крови.
- Водный, коллоидно-осмотический гомеостаз.
- Транспортировка веществ, питание клеток.
- Кислотно-основной гомеостаз.
- Влияние на свертываемость.
Выделяют три вида белков: альбумин, глобулин, фибриноген. На долю первого приходится около 4,5% от общего объема плазмы. На долю второго – от 2 до 3,5%. И третий может составлять от 0,2 до 0,4%.
Альбумин
Белки этого вида образуются в печени. Поэтому по количеству альбумина врачи судят о ее состоянии: пониженное содержание почти всегда указывает на развитие патологического процесса.
Благодаря своей высокой концентрации, вещество берет на себя основную работу по созданию онкотического давления. К другим его функциями относятся резервация аминокислот, участие в обмене веществ, транспортировка билирубина, жирных кислот, гормонов, попавших в организм лекарственных средств.
Глобулин
Глобулины синтезируются в печени, костном мозге, тимусе, лимфатических узлах, селезенке. Подразделяются на три фракции:
- Альфа-глобулины. Отвечают за белковый синтез, перемещение витаминов, липидов, гормонов. Взаимодействуют с билирубином, тироксином.
- Бета-глобулины. Переносят фосфолипиды, стероидные гормоны, катионы железа и цинка, стерины. Связывают холестерол и витамины.
- Гамма-глобулины. Принимают участие в запуске иммунных реакций, связывают гистамин.
Третья фракция включает в себя иммуноглобулины, антитела 5 классов: Jg A, Jg М, Jg G, Jg D, Jg Е. Все они отвечают за создание защиты от бактерий, вирусов. К этой же фракции относятся определяющие групповую принадлежность крови a- и b- агглютинины.
Фибриноген
Главной функцией фибриногена является обеспечение корректной свертываемости крови. Происходит это по следующей схеме:
- При нарушении целостности сосудов в организме вырабатывается особое соединение – тромбин.
- Под его воздействием фибриноген становится нерастворимым, преобразуется в небольшие клейкие нити.
- Эти нити приклеиваются к активировавшимся в месте поражения тромбоцитам, образуют кровяной сгусток.
Прочие белковые структуры
В незначительном количестве в плазме содержатся такие белковые структуры, как протромбин, иммунные белки, гаптоглобин, трансферритин, С-реактивный белок, тиротоксинсвязывающий глобулин.
К их основным функциям относятся контроль за реактивными изменениями иммунной системы, поддержание агрегатного состояния крови, активация свертываемости.
В плазме определяется постоянное присутствие витаминов, пировиноградной и молочной кислот, безазотистых органических веществ: липидов, расщепляющих гликоген ферментов, глюкозы. Она считается высокочувствительной к изменению концентрации содержащихся в крови веществ, поэтому ее забирают для проведения химических исследований при диагностике различных заболеваний.
Свойства крови
К какому типу ткани относится кровь и какими свойствами обладает? Прежде всего следует сказать, что это не просто жидкость. Это субстанция, вязкость которой зависит от процентного содержания в ней эритроцитов и белков. Подобные свойства влияют на скорость передвижения, а также на кровяное давление. Именно движением компонентов состава и плотностью субстанции обусловлена текучесть ткани. Отдельные клетки крови двигаются совершенно по-разному. Они способны перемещаться не только по отдельности, но и небольшими группами, например это касается эритроцитов. Эти форменные элементы способны двигаться в центре сосудов в виде «стопок», которые внешне напоминают сложенные монеты. Конечно, эритроциты могут перемещаться и поодиночке. Что касается белых клеток, то они обычно держатся вдоль стенок сосудов и только по одной.
Свойства крови
К какому типу ткани относится кровь и какими свойствами обладает? Прежде всего следует сказать, что это не просто жидкость. Это субстанция, вязкость которой зависит от процентного содержания в ней эритроцитов и белков. Подобные свойства влияют на скорость передвижения, а также на кровяное давление. Именно движением компонентов состава и плотностью субстанции обусловлена текучесть ткани. Отдельные клетки крови двигаются совершенно по-разному. Они способны перемещаться не только по отдельности, но и небольшими группами, например это касается эритроцитов. Эти форменные элементы способны двигаться в центре сосудов в виде «стопок», которые внешне напоминают сложенные монеты. Конечно, эритроциты могут перемещаться и поодиночке. Что касается белых клеток, то они обычно держатся вдоль стенок сосудов и только по одной.
Тромбоциты
Кровяные пластинки, бегущие около стенок кровеносных сосудов. Они выступают как бы в виде бессменных ремонтных бригад, которые следят за исправностью стенок сосуда. В каждом кубическом миллиметре находятся более 500 тысяч таких ремонтников. А всего в организме больше полутора триллионов.
Срок существования определенной группы клеток крови строго ограничен. К примеру, около 100 дней живут эритроциты. Жизнь лейкоцитов отмеряется от нескольких дней до нескольких десятилетий. Меньше всего живут тромбоциты. Они существуют лишь 4-7 дней.
Вместе с кровотоком все эти элементы свободно передвигаются по кровеносной системе. Там, где организм держит замеренный поток крови про запас — это в печени, селезенке и подкожной ткани, данные элементы могут задержаться здесь подольше.
У каждого из этих путешественников есть свой определенный старт и финиш. Эти две остановки им не миновать ни при любых обстоятельствах. Начало их пути и там, где клетка вымирает.
Известно, что большее число элементов крови начинают свой путь, оставляя костный мозг, некоторые начинают с селезенки или лимфатических узлах. Заканчивают они свой путь в печени, некоторые в костном мозге или селезенке.
В течение секунды рождаются около 10 миллионов появившихся на свет эритроцитов, такое же количество выпадает на погибшие клетки. Это означает, что строительные работы в кровеносной системе нашего организма не приостанавливаются ни на секунду.
За сутки количество таких эритроцитов может достигать до 200 миллиардов. При этом вещества, входящие в состав отмирающих клеток, перерабатываются и вновь эксплуатируются при воссоздании новых клеток.
Переливание не донорской крови: утильная, плацентарная, фибринолизная кровь
Конечно, ни плазма, ни кровезаменители не могут целиком заменить переливания крови, так как в них не содержатся переносчики кислорода — эритроциты, введение которых раненому, больному необходимо при обильной кровопотере или тяжелом хроническом малокровии.
Русским ученым принадлежит заслуга использования для переливания не донорской крови. С. И. Спасокукоцкий первый, в 1938 г., выдвинул эту идею и предложил пользоваться так называемой «утильной» кровью (источником ее получения могут служить кровопускания, производимые с лечебной целью, у перенесших закрытую травму черепа, у некоторых сердечных больных и др.).
Идея С. И. Спасокукоцкого оказалась весьма плодотворной, но использование такого источника получения не донорской крови не вошло в широкую практику, встретив некоторые затруднения. М. С. Малиновский в 1933 г. предложил брать для переливания плацентарную кровь, т. е. ту, что можно взять из последа (плаценты) после родов.
Ученые и врачи Санкт-Петербурга (тогда Ленинграда) и других городов страны осуществили множество переливаний плацентарной крови еще в довоенное время, но повсеместного распространения этот метод не получил. Главным образом из-за трудности уберечь плацентарную кровь от попадания в нее инфекции в момент извлечения. Ныне плацентарная кровь весьма широко используется с целью получения весьма ценных лечебных препаратов: протеина, гамма-глобулина и др.
Мысль использовать для переливаний кровь погибших, что было подкреплено целой серией убедительных опытов на животных, принадлежит В. И. Шамову (1928 г.) и С. С. Юдину. Выдающийся ученый, хирург С. С. Юдин загорелся смелой идеей: «Кровью мертвых лечить живых»; он осуществил и внедрил ее в лечебную практику (1933 г.) и вместе со своими сотрудниками (М. Г. Скундина, Р. Г. Сакаян и другие) многое сделал в этом направлении.
В чем суть такого метода? Кровь, взятая в первые шесть часов после внезапной гибели от несчастного случая (закрытой травмы) или мозгового удара, сохраняет все ценные биологические свойства, по существу является живой. Исходя из этого переливание ее применяется в хирургии, а впоследствии вошло и в терапевтическую практику.
Ученые сделали следующее интересное наблюдение. Такая кровь, набранная в сосуд без противосвертывающего вещества, либо вовсе не свертывается, либо, сначала свернувшись, затем вновь переходит в жидкое состояние. Объясняется это происходящим в ней фибринолизом.
Иногда извлеченную посмертно кровь называют «фибринолизной» и применяют без лротивосвертывающих веществ. Совершенно ясно, что получение ее и использование находятся под самым жестким и тщательным контролем, гарантирующим полную безвредность для реципиента.
Теперь, когда различные органы погибших современная наука все шире использует для спасения живых, уже не кажется удивительным переливание подобной крови. И следует подчеркнуть, что сама эта идея была впервые осуществлена в нашей стране еще в середине прошлого века.
Как переливание крови явилось первой успешной пересадкой живой ткани другому человеку, так и переливание фибринолизной крови — первым удачным использованием для этой цели тканей и органов умершего.
Система крови
К системе кровообращения можно отнести сердце и сосуды: кровеносные и лимфатические. Ключевая задача системы крови — это своевременное и полноценное снабжение органов и тканей всеми необходимыми для жизнедеятельности элементами. Движение крови по системе сосудов обеспечивается посредством нагнетательной деятельности сердца. Углубляясь в тему: «Значение, состав и функции крови» стоит определить тот факт, что непосредственно сама кровь двигается по сосудам непрерывно и поэтому способна поддерживать все жизненно важные функции, о которых шла речь выше (транспортная, защитная и др.).
Ключевым органом в системе крови является сердце. Оно имеет структуру полого мышечного органа и посредством вертикальной цельной перегородки делится на левую и правую половины. Есть еще одна перегородка — горизонтальная. Ее задача сводится к разделению сердца на 2 верхние полости (предсердия) и 2 нижние (желудочки).
Изучая состав и функции крови человека, важно понимать принцип действия кругов кровообращения. В системе крови функционируют два круга движения: большой и малый
Это означает, что кровь внутри организма двигается по двум замкнутым системам сосудов, которые соединяются с сердцем.
В качестве начальной точки большого круга выступает аорта, отходящая от левого желудочка. Именно она дает начало мелким, средним и крупным артериям. Они (артерии), в свою очередь, разветвляются на артериолы, завершающиеся капиллярами. Непосредственно сами капилляры образуют широкую сеть, которая пронизывает все ткани и органы. Именно в этой сети происходит отдача питательных веществ и кислорода клеткам, равно как и процесс получения продуктов метаболизма (углекислого газа в том числе).
От нижней части туловища кровь поступает в нижнюю полую вену, от верхней, соответственно, в верхнюю. Именно эти две полые вены и завершают большой круг кровообращения, попадая в правое предсердие.
Касаясь малого круга кровообращения, стоит отметить, что он начинается легочным стволом, отходящим от правого желудочка и несущим в легкие венозную кровь. Сам легочный ствол разделяется на две ветви, которые идут к правому и левому легкому. Легочные артерии делятся на более мелкие артериолы и капилляры, переходящие впоследствии в венулы, образующие вены. Ключевая задача малого круга кровообращения заключается в обеспечении регенерации газового состава в легких.
Изучая состав крови и функции крови, нетрудно прийти к выводу, что она имеет крайне важное значение для тканей и внутренних органов. Поэтому в случае серьёзной кровопотери или нарушения кровотока появляется реальная угроза жизни человека
58.2 Состав плазмы крови. Осмотическое давление крови фс ,обеспечивающая постоянство осмотическое давления крови.
В
состав плазмы крови входят вода (90—92%)
и сухой остаток (8—10%). Сухой остаток
состоит из органических и неорганических
веществ. К органическим веществам плазмы
крови относятся: 1) белки плазмы —
альбумины (около 4,5%), глобулины (2—3,5%),
фибриноген (0,2—0,4%). Общее количество
белка в плазме составляет 7—8%;2) небелковые
азотсодержащие соединения (аминокислоты,
полипептиды, мочевина, мочевая кислота,
креатин, креатинин, аммиак). Общее
количество небелкового азота в плазме
(так называемого остаточного азота)
составляет 11 —15 ммоль/л (30—40 мг%). При
нарушении функции почек, выделяющих
шлаки из организма, содержание остаточного
азота в крови резко возрастает;3)
безазотистые органические вещества:
глюкоза — 4,4—6,65 ммоль/л (80—120 мг%),
нейтральные жиры, липиды;4) ферменты и
проферменты: некоторые из них участвуют
в процессах свертывания крови и
фибринолиза, в частности протромбин и
профибринолизин. В плазме содержатся
также ферменты, расщепляющие гликоген,
жиры, белки и др.Неорганические вещества
плазмы крови составляют около 1 % от ее
состава. К этим веществам относятся
преимущественно катионы — Ка+, Са2+, К+,
Мg2+ и анионы Сl, НРO4, НСО3
Осмотическое
давление крови. Осмотическим давлением
называется сила, которая заставляет
переходить растворитель (для крови это
вода) через полупроницаемую мембрану
из менее в более концентрированный
раствор. Осмотическое давление крови
вычисляют криоскопическим методом с
помощью определения депрессии (точки
замерзания), которая для крови составляет
0,56—0,58°С. Депрессия молярного раствора
(раствор, в котором растворена 1
грамм-молекула вещества в 1 л воды)
соответствует 1,86°С. Подставив значения
в уравнение Клапейрона, легко рассчитать,
что осмотическое давление крови равно
приблизительно 7,6 атм.
Осмотическое
давление крови зависит в основном от
растворенных в ней низкомолекулярных
соединений, главным образом солей. Около
60% этого давления создается NaCl. Осмотическое
давление в крови, лимфе, тканевой
жидкости, тканях приблизительно одинаково
и отличается постоянством. Даже в
случаях, когда в кровь поступает
значительное количество воды или соли,
осмотическое давление не претерпевает
существенных изменений. При избыточном
поступлении в кровь вода быстро выводится
почками и переходит в ткани и клетки,
что восстанавливает исходную величину
осмотического давления. Если же в крови
повышается концентрация солей, то в
сосудистое русло переходит вода из
тканевой жидкости, а почки начинают
усиленно выводить соли. Продукты
переваривания белков, жиров и углеводов,
всасывающиеся в кровь и лимфу, а также
низкомолекулярные продукты клеточного
метаболизма могут изменять осмотическое
давление в небольших пределах.
Строение системы крови: виды гемоглобина
Начинкой красных кровяных клеток является гемоглобин — особый белок, благодаря которому эритроциты выполняют функцию газообмена и поддерживают рН крови. В норме у мужчин в каждом литре крови содержится в среднем 130-160 г гемоглобина, а у женщин — 120-150 г.
Гемоглобин состоит из белка глобина и небелковой части — четырех молекул гема, в каждую из которых входит атом железа, способный присоединять или отдавать молекулу кислорода.
При соединении гемоглобина с кислородом получается оксигемоглобин — непрочное соединение, в виде которого переносится большая часть кислорода. Гемоглобин, отдавший кислород, называется восстановленным, или дезоксигемоглобином. Гемоглобин, соединенный с углекислым газом, носит название карбогемоглобина. В виде этого соединения, которое также легко распадается, переносится 20 % углекислого газа.
Существует несколько видов и соединений гемоглобина, отличающихся строением его белковой части — глобина. Так, в крови плода содержится гемоглобин F, тогда как в эритроцитах взрослого человека преобладает гемоглобин А.
Различия в белковой части строения системы крови определяют сродство гемоглобина к кислороду. У гемоглобина F оно намного больше, что помогает плоду не испытывать гипоксию при относительно низком содержании кислорода в его крови.
В медицине принято вычислять степень насыщения эритроцитов гемоглобином. Это так называемый цветовой показатель, который в норме равен 1 (нормохромные эритроциты)
Определение его важно для диагностики различных видов анемий. Так, гипохромные эритроциты (менее 0,85) свидетельствуют о железодефицитной анемии, а гиперхромные (более 1,1) — о нехватке витамина В12 или фолиевой кислоты
Клетки крови
Ещё одному важному условию, которому соответствует кровь, является наличие клеток. Принадлежат они к разному типу, а большая часть образована в красном костном мозге
Называют их форменными элементами, и насчитывают они три разновидности:
- лейкоциты – важная часть иммунной системы;
- тромбоциты – участвуют в свертывании;
- эритроциты – транспортируют по организму газы: кислород и углекислоту.
Полностью понятию клеток отвечают лишь лейкоциты, белые клетки крови, в составе которых есть ядра. Чтобы им было легче выполнять свою задачу, они способны не только в составе крови двигаться по кровеносным сосудам, но и покидать их, если проблема обнаружена вне кровеносной системы. Поэтому при обнаружении патологии лейкоциты быстро стекаются к месту поражения и начинают бороться с патогеном: поглощают и растворяют его.
Эритроциты являются постклеточными образованиями: несмотря на то, что на начальном этапе развития ядра имеют, они теряют их по мере накопления гемоглобина. Этот белок обладает очень важным для организма свойством: благодаря входящему в его состав компоненту гем он способен присоединять к себе кислород. После этого эритроциты транспортируют его к клеткам по кровеносным сосудам, отдают им этот газ, забирая углекислоту, с которой расстаются в легких. Также именно благодаря гему кровь имеет красный цвет: кислород придает ей алый оттенок, углекислота – более насыщенный темный тон.
Тромбоциты расстались с ядрами на одной из стадий развития (образованы они из самой крупной клетки красного костного мозга, мегакариоцитов). Задачей тромбоцитов является остановить кровотечение. Как только ткани или сосуды в организме повреждаются, они слетаются к месту разрыва, прилипают к нему и запускают процессы свертывания.
Химический состав и группы
Согласно определению коллоидной химии — человеческая кровь представляет собой суспензию белковых тел в жидкости. Она состоит из двух частей: плазмы и форменных элементов. Соотношение этих составляющих у взрослого человека — соответственно 40 и 60%.
Схематический состав крови:
- Плазма — жидкая часть крови, на 85% состоящая из воды. В ней содержатся минеральные вещества, белки и прочие органические соединения, а также газы.
- Форменные элементы представлены эритроцитами, тромбоцитами и лейкоцитами.
Кровь — это одна из самых быстро восстанавливающихся тканей тела. Активный процесс регенерации форменных элементов происходит, благодаря постоянному разрушению устаревших телец. Главный кроветворный орган человека — красный костный мозг.
Подробное содержание веществ в крови, согласно таблице:
- соли и минеральные вещества — 0,95%;
- глюкоза — от 3,5 до 5,5 ммоль/литр;
- альбумин — 4%;
- фибриноген — 0,4%;
- глобулин — 2,7%;
- гемоглобин — от 7 до 8 ммоль/литр;
- эритроциты — от 4 до 5 млн в 1 мл;
- тромбоциты — приблизительно 300 тыс. в 1 мл;
- лейкоциты — от 6 до 10 тыс. в 1 мл.
Врачи, проводя общий анализ крови, следят, чтобы все параметры не отклонялись от нормы. Любое нарушение свидетельствует о возможном заболевании или патологическом процессе.
Кроме содержания форменных элементов, минеральных и органических веществ, учитываются и другие показатели:
- давление плазмы;
- плотность;
- средняя скорость оседания красных кровяных телец.
У людей бывают разные виды крови. Этот фактор обязательно учитывается при переливании и донорстве. На поверхности эритроцитов могут находиться антигены, способные вызвать защитную реакцию в иммунной системе другого организма.
В современной медицине существует более 30 способов систематизировать кровь по группам. Наиболее известные:
- АВ0 — это основная система, используемая для определения совместимости. Её особенность заключается в разделении всех людей, в зависимости от антигенов, на 4 группы.
- Резус-фактор позволяет определить наличие или отсутствие самого мощного белка — антигена D.
Обычно принадлежность к определённой группе записывается кратко, в виде формулы, состоящей из латинских букв, цифр и знака резус-принадлежности. Например, обозначение «А (II)+” говорит о том, что красные кровяные тельца пациента содержат белки А и В, а положительный резус-фактор указывает на наличие самого сильного антигена.