Плазматическая мембрана
Содержание:
- Митохондрии
- Строение и функции цитоплазмы. Немембранные органеллы цитоплазмы, их строение и функции.
- Структура и состав
- Какие функции выполняет клеточная мембрана?
- Функции плазменной мембраны
- Функции плазматической мембраны
- Что такое плазменная мембрана
- Клеточная мембрана
- Клеточный цикл
- Что такое клеточная мембрана
- Что такое клеточная мембрана
- Цитоплазма
Митохондрии
Митохондрии — особые органеллы клетки, основной функцией которых является синтез АТФ — универсального носителя энергии. Дыхание (поглощение кислорода и выделение углекислого газа) происходит также за счёт энзиматических систем митохондрий.
Внутренний просвет митохондрий, называемый матриксом, отграничен от цитоплазмы двумя мембранами, наружной и внутренней, между которыми располагается межмембранное пространство. Внутренняя мембрана митохондрии образует складки, так называемые кристы. В матриксе содержатся различные ферменты, принимающие участие в дыхании и синтезе АТФ. Центральное значение для синтеза АТФ имеет водородный потенциал внутренней мембраны митохондрии.
Рисунок 9. Митохондрии.
Митохондрии имеют свой собственный ДНК-геном и прокариотические рибосомы, что, безусловно, указывает на симбиотическое происхождение этих органелл. В ДНК митохондрий закодированы совсем не все митохондриальные белки, большая часть генов митохондриальных белков находятся в ядерном геноме, а соответствующие им продукты синтезируются в цитоплазме, а затем транспортируются в митохондрии. Геномы митохондрий отличаются по размерам: например геном человеческих митохондрий содержит всего 13 генов.
Строение и функции цитоплазмы. Немембранные органеллы цитоплазмы, их строение и функции.
Цитоплазма, отделенная от окружающей
среды плазмолеммой, включает в себя
основное вещество (матрикс
и гиалоплазма), находящиеся в ней
обязательные клеточные компоненты
– органеллы, а также различные непостоянные
структуры – включения.
В электронном микроскопе
матрикс цитоплазмы имеет вид гомогенногоили тонкозернистого вещества
с низкой электронной плотностью. Основное
вещество цитоплазмы заполняет
пространство между плазмалеммой, ядерной
оболочкой и другими внутриклеточными
структурами. Гиалоплазмаявляется
сложной коллоидной системой, включающей
в себя различные биополимеры. Основное
вещество цитоплазмы образует истинную
внутреннюю среду клетки, которая
объединяет все внутриклеточные структуры
и обеспечивает взаимодействие их
друг с другом. В электронном
микроскопе матрикс цитоплазмы имеет
вид гомогенногоили
тонкозернистого вещества с низкой
электронной плотностью. Включает
микротрабекулярную сеть, образованную
тонкими фибриллами толщиной 2-3
нм и пронизывающей всю
цитоплазму. Основное вещество цитоплазмы
следует рассматривать так же, как
сложную коллоидную систему, способную
переходить из жидкого состояния в
гелеобразное.
Функции: — объединяет все
клеточные структуры и обеспечивает их
взаимодействие друг с другом. – является
вместилищем для ферментов и АТФ. –
откладываются запасные продукты. –
происходят различные реакции (синтез
белка). – постоянство среды. – является
каркасом.
Включениями называют непостоянные
компоненты цитоплазмы, которые служат
запасными питательными веществами,
продуктами, подлежащими выведению из
клетки, балластными веществами.
Органеллы — это постоянные структуры
цитоплазмы, выполняющие в клетке
жизненно важные функции.
Немембранные органеллы:
1) Рибосомы
— мелкие тельца грибовидной
формы, в которых идет синтез белка. Они
состоят из рибосомальной РНК и белка,
образующего большую и малую субъединицы.
2) Цитоскелет
— опорно-двигательная
система клетки, включающая немембранные
образования, выполняющие как каркасную,
так и двигательную функции в клетке.
Эти нитчатые или фибриллярные могут
быстро возникать и так же быстро исчезать.
К этой системе относятся фибриллярные
структуры(5-7нм) и микротрубочки (состоят
из 13 субъединиц).
3) Клеточный центр состоит из центриолей
(длинна 150нм, диаметр 300-500 нм), окруженных
центросферами.
Центриоли состоят из 9 триплетов
микротрубочек. Функции: — образование
нитей митотического веретена деления.
– Обеспечение расхождения сестринских
хроматид в анафазе митоза.
4) Реснички (Ресничка представляет собой
тонкий цилиндрический вырост цитоплазмы
с постоянным диаметром 300 нм. Этот вырост
от основания до самой его верхушки
покрыт плазматической мембраной) и
жгутики ( длинна 150 мкм) — это специальные
органеллы движения, встречающиеся в
некоторых клетках различных организмов.
Структура и состав
Основным компонентом мембран являются фосфолипиды. Эти молекулы амфипатические, имеют полярную и аполярную зоны. Полярность позволяет им взаимодействовать с водой, в то время как хвост представляет собой гидрофобную углеродную цепь.
Ассоциация этих молекул происходит спонтанно в бислое, причем гидрофобные хвосты взаимодействуют друг с другом, а головки направлены наружу..
В клетке маленького животного мы находим невероятно большое количество липидов, порядка 109 молекулы. Мембраны имеют толщину около 7 нм. Гидрофобное внутреннее ядро, почти во всех мембранах, занимает толщину от 3 до 4 нм..
Жидкая мозаичная модель
Модель, которая в настоящее время обрабатывается биомембранами, известна как «жидкая мозаика», сформулированная в 70-х годах исследователями Сингером и Николсоном. Модель предполагает, что мембраны состоят не только из липидов, но также из углеводов и белков. Термин мозаика относится к указанной смеси.
Лицо мембраны, которая обращена к внешней стороне клетки, называется экзоплазматическим лицом. Напротив, внутренняя сторона цитозольная.
Эта же номенклатура применяется к биомембранам, составляющим органеллы, за исключением того, что экзоплазматическая поверхность в этом случае указывает на внутреннюю часть клетки, а не на внешнюю..
Липиды, которые составляют мембраны, не являются статичными. Они имеют возможность перемещаться с определенной степенью свободы в определенных регионах через структуру.
Мембраны состоят из трех основных типов липидов: фосфоглицериды, сфинголипиды и стероиды; все они амфипатические молекулы. Далее мы подробно опишем каждую группу:
Типы липидов
Первая группа, состоящая из фосфоглицеридов, происходит из глицерол-3-фосфата. Хвост, имеющий гидрофобный характер, состоит из двух цепей жирных кислот. Длина цепей различна: они могут содержать от 16 до 18 атомов углерода. Они могут иметь одинарные или двойные связи между атомами углерода.
Подклассификация этой группы дается типом головы, которую они представляют. Фосфатидилхолины являются наиболее распространенными, а голова содержит холин. В других типах различные молекулы, такие как этаноламин или серин, взаимодействуют с фосфатной группой..
Другой группой фосфоглицеридов являются плазмалогены. Липидная цепь связана с глицерином сложноэфирной связью; в свою очередь, существует углеродная цепь, связанная с глицерином посредством эфирной связи. Их довольно много в сердце и мозге.
Сфинголипиды происходят из сфингозина. Сфингомиелин является обильным сфинголипидом. Гликолипиды состоят из головок, образованных из сахаров.
Третий и последний класс липидов, которые составляют мембраны, являются стероидами. Это кольца из углерода, объединенные в группы по четыре. Холестерин — стероид, присутствующий в мембранах и особенно распространенный у млекопитающих и бактерий..
Липидные плоты
Существуют специфические зоны мембран эукариотических организмов, где сосредоточены холестерин и сфинголипиды. Эти домены также известны как рафт липид.
В этих регионах они также несут различные белки, функции которых являются клеточной передачи сигналов. Считается, что липидные компоненты модулируют белковые компоненты в рафтах.
Мембранные белки
Внутри плазматической мембраны закреплены ряд белков. Они могут быть цельными, закрепленными на липидах или расположенными на периферии..
Интегралы проходят через мембрану. Следовательно, они должны обладать гидрофильными и гидрофобными белковыми доменами, чтобы иметь возможность взаимодействовать со всеми компонентами..
В белках, которые прикреплены к липидам, углеродная цепь закреплена в одном из слоев мембраны. Белок действительно не проникает в мембрану.
Наконец, периферические не взаимодействуют напрямую с гидрофобной зоной мембраны. Напротив, они могут быть соединены посредством интегрального белка или полярными головками. Они могут быть расположены с обеих сторон мембраны.
Процент белков в каждой мембране варьируется в широких пределах: от 20% в нейронах до 70% в митохондриальной мембране, поскольку для осуществления метаболических реакций, которые там происходят, требуется большое количество белковых элементов..
Какие функции выполняет клеточная мембрана?
К функциям клеточной мембраны относят:
- Барьерную. Служит естественным фильтром для молекул, которые собираются проникнуть внутрь, она пропускает лишь те из них, которые отвечают определенным параметрам.
- Защитную. Так как у большинства животных клеточная стенка отсутствует, то плазмалемма также служит защитой от механических воздействий и предотвращает повреждения. Клеточная мембрана в растительной клетке подобную функцию не выполняет, так как клетки растений обладают сложной по структуре стенкой, которая способна защитить их.
- Матричную. Отвечает за расположение внутренних органоидов относительно друг друга для поддержания внутреннего баланса, необходимого для полноценной деятельности.
- Транспортную. Полностью контролирует обмен необходимыми веществами с внешней средой, помогает благодаря специальным особенностям тем из них, которые необходимы для жизнедеятельности, но, в то же время, не могут самостоятельно проникнуть внутрь.
- Ферментативную. Необходима для выработки ферментов, нужных, например, для переваривания пищи.
- Рецепторную. Необходима для принятия сигналов, говорящих о происходящем во внешней среде.
- Маркировочную. Каждая клетка уникальна, причем клетки умеют распознавать друг друга, это нужно для того, чтобы взаимодействовать между собой. Распознавание происходит благодаря строению цитолеммы, которое не повторяется.
Цитолеммы любых живых существ выполняют в сущности один и тот же ряд функций, лишь с небольшими вариациями, независимо от того, цитолемма кого именно рассматривается: животного, человека, насекомого или же клеточная мембрана растения.
Выводы о плазмалемме
Рассмотрев строение и функции данного органоида, можно заметить, что клеточная мембрана обладает особенностями, не характерными для других составляющих клетки. Открытие ее в начале прошлого века способствовало дальнейшему развитию медицины, послужило ключом для понимания множества человеческих болезней, а также способов их лечения.
Клеточная мембрана характерна для клеток каждого организма. Она служит защитой, а также выполняет очень важные функции, ведь через нее различные вещества проникают внутрь. Для того, чтобы данный органоид мог нормально функционировать, а, следовательно, чтобы и клетка в целом могла нормально функционировать, необходимо, чтобы в организме поддерживались такие условия, которые не мешают ее деятельности.
Как известно, мембрана плазматическая, строение ее представляет собой множество каналов, благодаря которым обеспечивается обмен с внешней средой. Учеными было выяснено, что для нормального функционирования, в частности для того, чтобы клетка не начала перерождаться в раковую, необходимо, чтобы каналы плазмалеммы работали исправно, не засорялись, не пропускали неподходящие молекулы.
Ряд рекомендаций, которые позволят этого добиться:
- правильное питание;
- регулярные прогулки на свежем воздухе;
- поддержание водного баланса организма.
Это поразительно, но именно такой, казалось бы, незначительный органоид может сильно влиять на самочувствие человека и его здоровье. Поэтому открытие плазмалеммы было огромным шагом вперед для биологической науки.
Как вы считаете, клеточная мембрана играет самую важную роль в функционировании клетки или есть более важные компоненты? Делитесь своим мнением в ! А также смотрите мультфильм о строении клетки.
Функции плазменной мембраны
Физический барьер
Плазматическая мембрана окружает все клетки и физически отделяет цитоплазма, который является материалом, из которого состоит клетка, из внеклеточной жидкости вне клетки. Это защищает все компоненты клетки от внешней среды и позволяет отдельным действиям происходить внутри и снаружи клетки.
Плазматическая мембрана обеспечивает структурную поддержку клетки. Это привязывает цитоскелет, которая представляет собой сеть белковых нитей внутри клетки, которые удерживают все части клетки на месте. Это придает клетке форму. Некоторые организмы, такие как растения и грибы иметь клеточная стенка в дополнение к мембране. Клеточная стенка состоит из таких молекул, как целлюлоза. Это обеспечивает дополнительную поддержку ячейке, и именно поэтому растение клетки не лопаются, как клетки животных, если в них диффундирует слишком много воды.
Селективная проницаемость
Плазматические мембраны избирательно проницаемы (или полупроницаемы), что означает, что через них могут проходить только определенные молекулы. Вода, кислород и углекислый газ могут легко проходить через мембрану. Обычно ионы (например, натрий, калий) и полярные молекулы не могут проходить через мембрану; они должны проходить через определенные каналы или поры в мембране, а не проходить сквозь них. Таким образом, мембрана может контролировать скорость, с которой определенные молекулы могут входить и выходить из клетки.
Эндоцитоз и экзоцитоз
Эндоцитоз это когда клетка поглощает относительно большее содержимое, чем отдельные ионы или молекулы, которые проходят через каналы. Через эндоцитоз клетка может принимать большое количество молекул или даже целых бактерии из внеклеточной жидкости. Экзоцитоз – это когда клетка высвобождает эти материалы. Клеточная мембрана играет важную роль в обоих этих процессах. Форма самой мембраны изменяется, чтобы позволить молекулам входить или выходить из клетки. Он также образует вакуоли, маленькие пузырьки мембраны, которые могут транспортировать много молекул одновременно, чтобы транспортировать материалы в разные места клетки.
Сотовая Сигнализация
Другой важной функцией мембраны является облегчение связи и передачи сигналов между клетками. Это достигается за счет использования различных белков и углеводов в мембране
Белки на клетке «помечают» эту клетку, чтобы другие клетки могли ее идентифицировать. Мембрана также имеет рецепторы, которые позволяют ей выполнять определенные задачи, когда молекулы, такие как гормоны, связываются с этими рецепторами.
Функции плазматической мембраны
Белки плазматической мембраны выполняют различные функции, а это предопределяет соответствующие функции плазмалеммы: барьерную, транспортную, контактную, рецепторную и ферментативную.
Строение мембраны практически исключает диффузию через нее полярных молекул, в частности ионов. Поэтому плазматическая мембрана выполняет барьерную функцию. Однако через мембрану должна осуществляться транспортировка веществ как внутрь клетки, так и наружу. Это необходимо для снабжения клетки питательными веществами и выведения продуктов обмена.
Различают два типа транспортировки веществ: движение веществ, при котором не расходуется энергия АТФ, называется пассивным; движение, связанное с затратами энергии, называется активным. Самым простым вариантом пассивной транспортировки является простая диффузия (с места с большей концентрацией вещества в места с меньшей ее концентрацией). Таким образом сквозь мембрану проникают прежде всего неполярные молекулы
Так, из неорганических веществ через мембраны хорошо диффундируют кислород и углекислый газ — это имеет важное значение для клеточного дыхания, из органических веществ — стероидные вещества
Транспортировка через мембрану полярных веществ обеспечивают белковые молекулы-переносчики. Этот тип транспортировки играет важную роль в процессе возбудимости нервных и мышечных клеток и подобным процессам. Молекулы-переносчики необходимы для попадания в клетку глюкозы. Пассивное движение веществ с помощью молекул переносчиков называется облегченной диффузией, как она работает показано на рисунке:
Принцип работы внутреннего белка, транспортирующего глюкозу
Иногда необходимо транспортировать вещество с места с меньшей его концентрацией в места, где его концентрация больше. Этот процесс требует затрат энергии, а потому является активным. Примером может быть калий-натриевый насос (Na+К+ — насос):
Принцип работы калий-натриевого насоса
Он обеспечивает выход из клетки ионов натрия и поступления в нее из внеклеточного пространства ионов калия. Работа этого насоса обеспечивает нормальное функционирования клеток, поддерживая на определенном уровне концентрации ионов Na+ и K+ внутри и снаружи мембраны.
Особым типом активного транспорта является цитоз — перемещение веществ в составе мембранных пузырьков. Процесс вывода веществ из клетки в результате слияния везикул с плазматической мембраной называется экзоцитозом. Таким образом из клеток высвобождаются синтезированные в них ферменты, гормоны, медиаторы и др.
Процесс активного поступления твердых и жидких веществ из внешней среды внутрь клетки называется эндоцитозом. Различают пиноцитоз — поглощение жидкостей и фагоцитоз — поглощение вместе с жидкими веществами твердых частиц. Фагоцитоз играет важную роль в поглощении клетками иммунной системы чужеродных клеток и бактерий, а также в питании одноклеточных организмов.
Схемы процессов экзоцитоза (а) и эндоцитоза (б)
У многоклеточных организмов клетки связаны между собой. Такая связь обеспечивают белки, которые как бы «сшивают» две мембраны, формируя межклеточные контакты.
Рецепторная функция заключается в способности реагировать на химические вещества, изменяя при этом функционирование клеток. Источниками таких биологически активных веществ могут быть как другие клетки (гормоны, нейромедиаторы и т.д.), так и окружающая среда (питательные вещества, яды и т.п.). Первым звеном реагирования на наличие химических веществ является рецепторные белки, встроенные в плазмалемму и способные избирательно связываться с другими веществами.
Некоторые белки, встроенные в клеточную мембрану, играют роль ферментов. В частности, они обеспечивают мембранное (пристеночное) пищеварение в кишечнике человека. В прокариотических клетках мембранные белки участвуют в процессах фотосинтеза, запасании энергии путем синтеза АТФ и др.
Что такое плазменная мембрана
Плазменная мембрана относится к полупроницаемому барьеру, который окружает клеточные компартменты. Плазматическая мембрана, которая окружает клетку, называется клеточной мембраной. Плазматическая мембрана также окружает органеллы эукариот. Как правило, органелла представляет собой динамическую структуру, которая выполняет определенную функцию внутри клетки. Следовательно, для выполнения своих функций внутренняя часть органеллы должна быть определенной средой. Внутриклеточные пространства разных органелл также могут отличаться друг от друга. Поддержание гомеостаза внеклеточных пространств внутри органелл является функцией плазматической мембраны. В зависимости от функции органеллы также изменяется структура плазматической мембраны, которая окружает органеллу. Митохондриальная мембрана показана на фиг.2.
Рисунок 2: Митохондриальная мембрана
Некоторые плазматические мембраны являются специализированными для выполнения функций органелл. Например, митохондрий — это органелла, которая выполняет клеточное дыхание у эукариот. Таким образом, митохондриальная мембрана специализируется на выполнении цепи переноса электронов. Хлоропластная мембрана также специализируется на проведении фотосинтеза. Вакуоли растительных клеток также заключены в плазматическую мембрану.
Клеточная мембрана
Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.
Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.
Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.
Клеточный цикл
Согласно научным источникам, в клеточный цикл входят все периоды развития клетки от момента деления материнской и образования дочерней до гибели (или деления). Клеточный цикл кратко можно охарактеризовать несколькими точными параметрами.
Длительность
Существуют как быстро делящиеся — 12-36 ч (например, кроветворные), так и медленно воспроизводящиеся. Средний цикл, свойственный многим организмам — от 10 до 25 часов.
Фазы клеточного цикла
Жизнь клеточного организма можно разделить на несколько фаз.
Фазы:
- Интерфаза, или клеточный рост. В этот период происходит быстрая наработка веществ (ДНК, белков и т. д.) и подготовка к делению. Интерфазу можно условно разделить на подпериоды. Это G1-фаза (начальный рост), S-фаза (репликация ДНК) и G2-фаза (непосредственно подготовка к митозу).
- Фаза митоза, или фаза М. Это время жизни также можно разделить на две стадии – кариокинез (деление ядра) и цитокинез (деление цитоплазмы).
Клеточный цикл — высокоорганизованная система.
Регуляция клеточного цикла
Все периоды клеточного цикла регулируются особыми белками — циклин-зависимыми киназами и циклинами. Содержание этих белков варьируется на разных стадиях жизненного цикла. После митотического деления они полностью разрушаются.
Что такое клеточная мембрана
Клеточная мембрана — это биологическая мембрана, которая отделяет внутреннюю часть клетки от внешней среды. Клеточная мембрана также называется плазматическая мембрана а также цитоплазматическая мембрана, Он избирательно проницаем для таких веществ, как ионы и органические молекулы. Клеточная мембрана поддерживает постоянную среду внутри протоплазмы, контролируя проникновение веществ внутрь и наружу клетки. Это также защищает клетку от окружающей среды.
Структура клеточной мембраны
Структура мембраны описывается моделью жидкостной мозаики. Клеточная мембрана состоит из липидного бислоя со встроенными в него белками. Липидный бислой рассматривается как двумерная жидкость, в которой молекулы липида и белка более или менее легко диффундируют в нем. Образуется при самосборке липидных молекул. Эти липиды являются амфипатическими фосфолипидами. Их гидрофобные «хвостовые» области скрыты от окружающей воды или гидрофильной среды двухслойной структурой. Таким образом, гидрофильные головки взаимодействуют с внутриклеточными / цитозольными или внеклеточными лицами. Благодаря этому образуется непрерывный сферический липидный бислой. Следовательно, гидрофобные взаимодействия рассматриваются как основные движущие силы для образования липидного бислоя.
Структура липидного бислоя предотвращает проникновение полярных растворенных веществ в клетку. Но пассивная диффузия неполярных молекул разрешена. Следовательно, трансмембранные белки функционируют либо как поры, каналы или ворота для диффузии полярных растворенных веществ. Фосфатидилсерин концентрируется на мембране, чтобы создать дополнительный барьер для заряженных молекул.
Мембранные структуры, такие как подосома, кавеола, очаговая адгезия, инвадоподиум и различные типы клеточных соединений, присутствуют в мембране. Это называется «supramembrane”Структуры, которые обеспечивают связь, клеточную адгезию, экзоцитоз и эндоцитоз. Под клеточной мембраной цитоскелет находится в цитоплазме. Цитоскелет обеспечивает леса для закрепления мембранных белков. Подробная схема клеточной мембраны показана на Рисунок 1.
Рисунок 1: Подробная схема клеточной мембраны
Состав клеточной мембраны
Клеточная мембрана в основном состоит из липидов и белков. В клеточной мембране можно найти три класса амфипатических липидов: фосфолипиды, гликолипиды и стеролы. Фосфолипиды являются наиболее распространенным типом липидов среди них. Холестерин обнаружен диспергированным по всей мембране в клетках животных.
Липосомы найдены ли липидные везикулы в клеточной мембране; они заключены в круглые карманы липидным бислоем. Углеводы можно найти в виде гликопротеинов и гликолипидов. 50% клеточной мембраны состоит из белков. Белки могут быть обнаружены в мембране трех типов: цельные или трансмембранные белки, закрепленные на липидах белки и периферические белки.
Функция клеточной мембраны
Клеточная мембрана физически отделяет цитоплазму от ее внеклеточной среды. Он также закрепляет цитоскелет, обеспечивая форму клетки. С другой стороны, клеточная мембрана прикрепляется к другим клеткам ткани, обеспечивая механическую поддержку клетки.
Клеточная мембрана избирательно проницаема, регулируя постоянную внутреннюю среду для функционирования клетки. Движение через клеточную мембрану может происходить как при пассивной, так и при активной диффузии. Четыре клеточных механизма могут быть идентифицированы в клеточной мембране. Небольшие молекулы, такие как углекислый газ, кислород и ионы, перемещаются через мембрану путем пассивного осмоса и диффузии. Питательные вещества, такие как сахар, аминокислоты и метаболиты, перемещаются пассивно через трансмембранные белковые каналы. Аквапорины являются своего рода белковыми каналами, которые транспортируют воду путем облегченной диффузии. Поглощение молекул в клетку путем их поглощения называется эндоцитозом. Твердые частицы поглощаются фагоцитозом, а небольшие молекулы и ионы поглощаются пиноцитозом. Некоторые непереваренные остатки удаляются из клетки путем инвагинации и образования пузырька. Этот процесс называется экзоцитозом.
Что такое клеточная мембрана
Если провести аналогию с куриным яйцом (разбив скорлупу, аккуратно отделить от нее тонкую полупрозрачную пленочку), то визуально можно представить, что скорлупа — это плотная клеточная оболочка, а пленка — мембрана. Эта картинка очень наглядно позволяет увидеть, каким образом под клеточной стенкой, состоящей из целлюлозы, располагается плазмалемма. Конечно, это представление будет условным, но, действительно, мембрана в переводе с латинского языка означает «кожа». Хотя этот термин достаточно давний, он точно передает сущность мембранной структуры .
Цитолемма (еще одно ее название) животной клетки плотной оболочкой не защищена, однако имеет особый слой, состоящий из белков и жиров, соединенных с сахарами (гликопротеинов и гликолипидов). Называют его гликокаликс, и роль, которую он несет (рецепторная, сигнальная), очень важна для жизнедеятельности.
Строение
Строение структуры уникально, и именно за счет него функции клеточной мембраны выполняются точно и избирательно.
В структуру плазмалеммы входят молекулы:
- фосфолипидов;
- гликолипидов;
- холестерола;
- белков.
Однако не только такой щедрый химический состав делает цитоплазматическую мембрану особой структурой, все свои функции она выполняет благодаря строгой организации молекул.
Строение плазмалеммы физиологически идеально — двойной слой молекул жиров (липидов), полярно организованных, не дают «своим» выходить за пределы клетки, а «чужим» — проникать внутрь.
Организация плазмалеммы:
- мембрана состоит из липидов молекулы, которые имеют особое строение;
- каждый липид имеет два конца — гидрофильная («любящая» воду) головка и гидрофобный («боящийся» воды) хвост;
- липиды выстроены таким образом, чтобы головки были снаружи, а гидрофобные хвосты внутри;
- поверхность мембраны гидрофильна (пропускает воду и, соответственно, растворы), а вот внутренняя часть, состоящая из гидрофобных окончаний, воду отталкивает;
- в основном молекулы липидов содержат остатки фосфорной кислоты (это фосфолипиды), некоторые связаны с углеводами (гликолипиды) и холестеролом;
- холестерол придает мембране упругость и жесткость;
- благодаря электростатическим свойствам липиды притягивают молекулы белков, которые также входят в структуру цитолеммы.
Именно белковые молекулы (гранулы) заслуживают отдельного внимания ученых. Из-за своего различного положения и ориентации в полужидкой липидной среде они выполняют самые различные и очень важные функции.
Внутри и на поверхности цитолеммы встречаются следующие виды белков:
- Периферические. Эти молекулы расположены на поверхности и в основном выполняют защитную и стабилизирующую функции. Так, они выстраивают ферменты в конвейерные цепи и не позволяют ферментам просто перемещаться вдоль бислоя.
- Погруженные внутрь (полуинтегральные). Основная их функция — ферментативная, также они могут участвовать в транспорте веществ. Изучена и еще одна интересная роль этих белков — как переносчиков. Они легко соединяются с транспортируемыми молекулами и проводят их внутрь клетки.
- Пронизывающие (интегральные). Они располагаются таким образом, что проходят насквозь, через билипидный слой. Если несколько таких белков сливаются, то образуется канал (пора), через которую могут проходить определенные вещества, связываясь с белковыми молекулами.
Таким образом, все элементы мембранного бислоя несут строго ограниченные своей ролью и строением функции. Благодаря такой организации система работает слаженно и точно.
Отмечено, что плазмалеммы даже внутри одной клетки неоднородны. В них различается не только соотношение химических составных (белков, липидов, углеводов), но и вязкость внутреннего содержимого, ферментативная активность, плотность наружного слоя, толщина.
Месторасположение в клетке
Мембранные структуры буквально пронизывают клеточное содержимое. Они ограничивают все органоиды (за редким исключением, например рибосомы), выстилают их изнутри, являются оболочками ядер.
Самая массивная по содержанию плазмалеммы структура — эндоплазматическая сеть (ЭПР). Если сложить все мембраны, ее составляющие, то получится площадь более половины общей — на все клеточное пространство. По морфологии оболочка ЭПР сходна с внешней ядерной. Они составляют с ней единую систему и обеспечивают активный взаимный перенос элементов.
Комплекс Гольджи — еще один органоид, полностью выполненный из мембранных мешочков (цистерн). Также цитолеммы имеют митохондрии и пластиды.
Плазматическая мембрана — это часть плазмалеммы, находящаяся на границе клеточного содержимого. Она ограничивает протопласт от внешней среды, окружает клетку, защищая его от наружного воздействия.
Цитоплазма
Жидкую составляющую цитоплазмы также называют цитозолем. Под световым микроскопом казалось, что клетка заполнена чем-то вроде жидкой плазмы или золя, в котором «плавают» ядро и другие органоиды. На самом деле это не так. Внутреннее пространство эукариотической клетки строго упорядочено.
Передвижение органоидов координируется при помощи специализированных транспортных систем, так называемых микротрубочек, служащих внутриклеточными «дорогами», и специальных белков динеинов и кинезинов, играющих роль «двигателей». Отдельные белковые молекулы также не диффундируют свободно по всему внутриклеточному пространству, а направляются в необходимые компартменты при помощи специальных сигналов на их поверхности, узнаваемых транспортными системами клетки.